Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?

Identifieur interne : 004726 ( Main/Exploration ); précédent : 004725; suivant : 004727

Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?

Auteurs : D R Nobles [États-Unis] ; D K Romanovicz ; R M Brown

Source :

RBID : pubmed:11598227

Descripteurs français

English descriptors

Abstract

Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba x Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes.

PubMed: 11598227
PubMed Central: PMC125088


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?</title>
<author>
<name sortKey="Nobles, D R" sort="Nobles, D R" uniqKey="Nobles D" first="D R" last="Nobles">D R Nobles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Molecular Genetics and Microbiology, The University of Texas, Austin, 78712, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular Genetics and Microbiology, The University of Texas, Austin, 78712</wicri:regionArea>
<wicri:noRegion>78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Romanovicz, D K" sort="Romanovicz, D K" uniqKey="Romanovicz D" first="D K" last="Romanovicz">D K Romanovicz</name>
</author>
<author>
<name sortKey="Brown, R M" sort="Brown, R M" uniqKey="Brown R" first="R M" last="Brown">R M Brown</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2001">2001</date>
<idno type="RBID">pubmed:11598227</idno>
<idno type="pmid">11598227</idno>
<idno type="pmc">PMC125088</idno>
<idno type="wicri:Area/Main/Corpus">004726</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004726</idno>
<idno type="wicri:Area/Main/Curation">004726</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004726</idno>
<idno type="wicri:Area/Main/Exploration">004726</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?</title>
<author>
<name sortKey="Nobles, D R" sort="Nobles, D R" uniqKey="Nobles D" first="D R" last="Nobles">D R Nobles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Section of Molecular Genetics and Microbiology, The University of Texas, Austin, 78712, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Section of Molecular Genetics and Microbiology, The University of Texas, Austin, 78712</wicri:regionArea>
<wicri:noRegion>78712</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Romanovicz, D K" sort="Romanovicz, D K" uniqKey="Romanovicz D" first="D K" last="Romanovicz">D K Romanovicz</name>
</author>
<author>
<name sortKey="Brown, R M" sort="Brown, R M" uniqKey="Brown R" first="R M" last="Brown">R M Brown</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2001" type="published">2001</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Arabidopsis Proteins (MeSH)</term>
<term>Biological Evolution (MeSH)</term>
<term>Cellulose (biosynthesis)</term>
<term>Cellulose (genetics)</term>
<term>Cyanobacteria (classification)</term>
<term>Cyanobacteria (enzymology)</term>
<term>Cyanobacteria (genetics)</term>
<term>Glucosyltransferases (classification)</term>
<term>Glucosyltransferases (genetics)</term>
<term>Microfibrils (ultrastructure)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plants (enzymology)</term>
<term>Plants (genetics)</term>
<term>Polysaccharides, Bacterial (MeSH)</term>
<term>Sequence Homology, Amino Acid (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellulose (biosynthèse)</term>
<term>Cellulose (génétique)</term>
<term>Cyanobactéries (classification)</term>
<term>Cyanobactéries (enzymologie)</term>
<term>Cyanobactéries (génétique)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Glucosyltransferases (classification)</term>
<term>Glucosyltransferases (génétique)</term>
<term>Microfibrilles (ultrastructure)</term>
<term>Phylogenèse (MeSH)</term>
<term>Plantes (enzymologie)</term>
<term>Plantes (génétique)</term>
<term>Polyosides bactériens (MeSH)</term>
<term>Protéines d'Arabidopsis (MeSH)</term>
<term>Similitude de séquences d'acides aminés (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
<term>Évolution biologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="classification" xml:lang="en">
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Cellulose</term>
<term>Glucosyltransferases</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Arabidopsis Proteins</term>
<term>Polysaccharides, Bacterial</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Cellulose</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Cyanobacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cyanobactéries</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cyanobacteria</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cyanobacteria</term>
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cellulose</term>
<term>Cyanobactéries</term>
<term>Glucosyltransferases</term>
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" qualifier="ultrastructure" xml:lang="en">
<term>Microfibrils</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Biological Evolution</term>
<term>Molecular Sequence Data</term>
<term>Phylogeny</term>
<term>Sequence Homology, Amino Acid</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="fr">
<term>Données de séquences moléculaires</term>
<term>Glucosyltransferases</term>
<term>Microfibrilles</term>
<term>Phylogenèse</term>
<term>Polyosides bactériens</term>
<term>Protéines d'Arabidopsis</term>
<term>Similitude de séquences d'acides aminés</term>
<term>Séquence d'acides aminés</term>
<term>Évolution biologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba x Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11598227</PMID>
<DateCompleted>
<Year>2001</Year>
<Month>12</Month>
<Day>12</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>127</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2001</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?</ArticleTitle>
<Pagination>
<MedlinePgn>529-42</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Although cellulose biosynthesis among the cyanobacteria has been suggested previously, we present the first conclusive evidence, to our knowledge, of the presence of cellulose in these organisms. Based on the results of x-ray diffraction, electron microscopy of microfibrils, and cellobiohydrolase I-gold labeling, we report the occurrence of cellulose biosynthesis in nine species representing three of the five sections of cyanobacteria. Sequence analysis of the genomes of four cyanobacteria revealed the presence of multiple amino acid sequences bearing the DDD35QXXRW motif conserved in all cellulose synthases. Pairwise alignments demonstrated that CesAs from plants were more similar to putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and Nostoc punctiforme American Type Culture Collection 29133 than any other cellulose synthases in the database. Multiple alignments of putative cellulose synthases from Anabaena sp. Pasteur Culture Collection 7120 and N. punctiforme American Type Culture Collection 29133 with the cellulose synthases of other prokaryotes, Arabidopsis, Gossypium hirsutum, Populus alba x Populus tremula, corn (Zea mays), and Dictyostelium discoideum showed that cyanobacteria share an insertion between conserved regions U1 and U2 found previously only in eukaryotic sequences. Furthermore, phylogenetic analysis indicates that the cyanobacterial cellulose synthases share a common branch with CesAs of vascular plants in a manner similar to the relationship observed with cyanobacterial and chloroplast 16s rRNAs, implying endosymbiotic transfer of CesA from cyanobacteria to plants and an ancient origin for cellulose synthase in eukaryotes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nobles</LastName>
<ForeName>D R</ForeName>
<Initials>DR</Initials>
<AffiliationInfo>
<Affiliation>Section of Molecular Genetics and Microbiology, The University of Texas, Austin, 78712, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Romanovicz</LastName>
<ForeName>D K</ForeName>
<Initials>DK</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Brown</LastName>
<ForeName>R M</ForeName>
<Initials>RM</Initials>
<Suffix>Jr</Suffix>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029681">Arabidopsis Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011135">Polysaccharides, Bacterial</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9004-34-6</RegistryNumber>
<NameOfSubstance UI="D002482">Cellulose</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="D005964">Glucosyltransferases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C457769">PRC1 protein, Arabidopsis</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.-</RegistryNumber>
<NameOfSubstance UI="C076062">cellulose synthase (cyclic diguanylic acid)</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.4.1.12</RegistryNumber>
<NameOfSubstance UI="C028634">cellulose synthase (UDP-forming)</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CitationSubset>S</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029681" MajorTopicYN="Y">Arabidopsis Proteins</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005075" MajorTopicYN="N">Biological Evolution</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002482" MajorTopicYN="Y">Cellulose</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000458" MajorTopicYN="N">Cyanobacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005964" MajorTopicYN="N">Glucosyltransferases</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020894" MajorTopicYN="N">Microfibrils</DescriptorName>
<QualifierName UI="Q000648" MajorTopicYN="N">ultrastructure</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011135" MajorTopicYN="N">Polysaccharides, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017386" MajorTopicYN="N">Sequence Homology, Amino Acid</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2001</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2001</Year>
<Month>10</Month>
<Day>13</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11598227</ArticleId>
<ArticleId IdType="pmc">PMC125088</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Mol Evol. 1981;17(3):133-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7265265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Sep;118(1):9-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9733521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2000 Jan 4;19(1):57-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10619844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 8;289(5485):1724-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10976061</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci Suppl. 1985;2:13-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3867669</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 1987 Jul;4(4):406-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3447015</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1995 Sep 26;92(20):9353-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7568131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Comput Biol. 2000;7(6):761-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11382360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 1999 Jul 15;176(2):321-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10427714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Dec;140 ( Pt 12):3233-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7881544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Apr;101(4):1131-1142</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12231764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1984 Mar;160(4):372-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24258586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Mar;177(6):1419-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7883697</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1995 Aug;177(15):4356-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7635821</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Aug;123(4):1313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938350</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2001 Mar;39(6):1452-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11260463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Genet. 2001 Mar;17(3):113-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11226586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Rev. 1991 Mar;55(1):35-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2030672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 Jul 10;257(5067):232-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1631544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1990 Oct 5;215(3):403-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2231712</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1976 Dec;73(12):4565-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1070005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Genet. 1997 Jul;32(1):1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9309164</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2001 May;268(9):2678-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11322889</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1999 Aug 13;285(5430):1025-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10475845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Mar;179(6):1940-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9068639</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1992 May 1;256(5057):622-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1585174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Feb 29;97(5):2391-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10681463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1998 Oct 22;8(21):1161-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9799733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1988;167:3-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3148836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1983 May;154(2):906-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6302086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1987;153:215-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3123881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Aug;180(15):3923-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9683490</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1969 Dec;32(3):420-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5361396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 May;11(5):769-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10330464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1998 May 14;393(6681):162-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11560168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:245-276</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2000 Oct;211(5):729-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11089687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Zellforsch Mikrosk Anat. 1954;39(5):515-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13206292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1994 Jan;176(1):1-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8282683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Prep Biochem Biotechnol. 2000 Nov;30(4):321-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11065277</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Evol. 1989 Aug;29(2):170-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2509717</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Brown, R M" sort="Brown, R M" uniqKey="Brown R" first="R M" last="Brown">R M Brown</name>
<name sortKey="Romanovicz, D K" sort="Romanovicz, D K" uniqKey="Romanovicz D" first="D K" last="Romanovicz">D K Romanovicz</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Nobles, D R" sort="Nobles, D R" uniqKey="Nobles D" first="D R" last="Nobles">D R Nobles</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004726 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004726 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11598227
   |texte=   Cellulose in cyanobacteria. Origin of vascular plant cellulose synthase?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11598227" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020